A.360 B.370
C.380 D.390
答案:C
2.已知a1=1,a8=6,则S8等于( )
A.25 B.26
C.27 D.28
答案:D
3.设等差数列{an}的前n项和为Sn,若a6=S3=12,则{an}的通项an=________.
解析:由已知a1+5d=123a1+3d=12⇒a1=2,d=2.故an=2n.
答案:2n
4.在等差数列{an}中,已知a5=14,a7=20,求S5.
解:d=a7-a57-5=20-142=3,
a1=a5-4d=14-12=2,
所以S5=5a1+a52=52+142=40.
一、选择题
1.(2011年杭州质检)等差数列{an}的前n项和为Sn,若a2=1,a3=3,则S4=( )
A.12 B.10
C.8 D.6
解析:选C.d=a3-a2=2,a1=-1,
S4=4a1+4×32×2=8.
2.在等差数列{an}中,a2+a5=19,S5=40,则a10=( )
A.24 B.27
C.29 D.48
解析:选C.由已知2a1+5d=19,5a1+10d=40.
解得a1=2,d=3.∴a10=2+9×3=29. X k b 1 . c o m
3.在等差数列{an}中,S10=120,则a2+a9=( )
A.12 B.24
C.36 D.48
解析:选B.S10=10a1+a102=5(a2+a9)=120 高中物理.∴a2+a9=24.
4.已知等差数列{an}的公差为1,且a1+a2+…+a98+a99=99,则a3+a6+a9+…+a96+a99=( )
A.99 B.66
C.33 D.0
解析:选B.由a1+a2+…+a98+a99=99,
得99a1+99×982=99.
∴a1=-48,∴a3=a1+2d=-46.
又∵{a3n}是以a3为首项,以3为公差的等差数列.
∴a3+a6+a9+…+a99=33a3+33×322×3
=33(48-46)=66.
5.若一个等差数列的前3项的和为34,最后3项的和为146,且所有项的和为390,则这个数列有( )
A.13项 B.12项
C.11项 D.10项
解析:选A.∵a1+a2+a3=34,①
an+an-1+an-2=146,②
又∵a1+an=a2+an-1=a3+an-2,
∴①+②得3(a1+an)=180,∴a1+an=60.③
Sn=a1+an•n2=390.④
将③代入④中得n=13.
6.在项数为2n+1的等差数列中,所有奇数项的和为165,所有偶数项的和为150,则n等于( )
A.9 B.10
C.11 D.12
解析:选B.由等差数列前n项和的性质知S偶S奇=nn+1,即150165=nn+1,∴n=10.
二、填空题
7.设数列{an}的首项a1=-7,且满足an+1=an+2(n∈N*),则a1+a2+…+a17=________.
解析:由题意得an+1-an=2,
∴{an}是一个首项a1=-7,公差d=2的等差数列.
∴a1+a2+…+a17=S17=17×(-7)+17×162×2=153.
答案:153
8.已知{an}是等差数列,a4+a6=6,其前5项和S5=10,则其公差为d=__________.
解析:a4+a6=a1+3d+a1+5d=6.①
S5=5a1+12×5×(5-1)d=10.②w
由①②得a1=1,d=12.
答案:12
9.设Sn是等差数列{an}的前n项和,a12=-8,S9=-9,则S16=________.
解析:由等差数列的性质知S9=9a5=-9,∴a5=-1.
又∵a5+a12=a1+a16=-9,
∴S16=16a1+a162=8(a1+a16)=-72.
答案:-72
三、解答题
10.已知数列{an}的前n项和公式为Sn=n2-23n-2(n∈N*).
(1)写出该数列的第3项;
(2)判断74是否在该数列中.
解:(1)a3=S3-S2=-18.
(2)n=1时,a1=S1=-24,
n≥2时,an=Sn-Sn-1=2n-24,
即an=-24,n=1,2n-24,n≥2,
由题设得2n-24=74(n≥2),解得n=49.
∴74在该数列中.
11.(2010年课标全国卷)设等差数列{an}满足a3=5,a10=-9.
(1)求{an}的通项公式;
(2)求{an}的前n项和Sn及使得Sn最大的序号n的值.
解:(1)由an=a1+(n-1)d及a3=5,a10=-9得
a1+2d=5,a1+9d=-9,可解得a1=9,d=-2,
所以数列{an}的通项公式为an=11-2n.
(2)由(1)知,Sn=na1+nn-12d=10n-n2.
因为Sn=-(n-5)2+25,
所以当n=5时,Sn取得最大值.
12.已知数列{an}是等差数列.
(1)前四项和为21,末四项和为67,且各项和为286,求项数;
(2)Sn=20,S2n=38,求S3n.
解:(1)由题意知a1+a2+a3+a4=21,an-3+an-2+an-1+an=67,
所以a1+a2+a3+a4+an-3+an-2+an-1+an=88.
所以a1+an=884=22.
因为Sn=na1+an2=286,所以n=26.
(2)因为Sn,S2n-Sn,S3n-S2n成等差数列,
所以S3n=3(S2n-Sn)=54.
本文来自:逍遥右脑记忆 http://www.jiyifa.net/gaozhong/31818.html
相关阅读:几何的三大问题