高中数学数形结合思想的方法特点

编辑: 逍遥路 关键词: 高中数学 来源: 高中学习网


  数形结合思想是什么:数形结合是高中数学中四种重要思想方法之一,对于所研究的代数问题,有时可研究其对应几何的性质使问题得以解决(以形助数);或者对于所研究的几何问题,可借助于对应图形的数量关系使问题得以解决(以数助形),这种解决问题的方法称之为数形结合。

  数形结合的特点是什么:是根据数量与图形之间的关系,认识研究对象的数学特征、寻找解决问题的一种数学思想。通常情况下,在应用数形结合思想方法解决问题时,往往偏重于"形"对"数"的作用,也就是经常地利用图形的直观性来解决某些数学问题。

  其特点是形象、直观、快捷,

  1.数形结合与数形转化的目的是为了发挥形的生动性和直观性,发挥数的思路的规范性与严密性,两者相辅相成,扬长避短。

  2.恩格斯是这样来定义数学的:“数学是研究现实世界的量的关系与空间形式的科学”。这就是说:数形结合是数学的本质特征,宇宙间万事万物无不是数和形的和谐的统一。因此,数学学习中突出数形结合思想正是充分把握住了数学的精髓和灵魂。

  3.数形结合的本质是:几何图形的性质反映了数量关系,数量关系决定了几何图形的性质。

  4.华罗庚先生曾指出:“数缺性时少直观,形少数时难入微;数形结合百般好,隔裂分家万事非。”数形结合作为一种数学思想方法的应用大致分为两种情形:或借助于数的精确性来阐明形的某些属性,或者借助于形的几何直观性来阐明数之间的某种关系.

  5.把数作为手段的数形结合主要体现在解析几何中,历年高考的解答题都有关于这个方面的考查(即用代数方法研究几何问题)。而以形为手段的数形结合在高考客观题中体现。

  6.我们要抓住以下几点数形结合的解题要领:

  (1)对于研究距离、角或面积的问题,可直接从几何图形入手进行求解即可;

  (2)对于研究函数、方程或不等式(最值)的问题,可通过函数的图象求解(函数的零点,顶点是关键点),作好知识的迁移与综合运用;

  (3)通过构造距离函数、斜率函数、截距函数、单位圆x2+y2=1上的点及余弦定理进行转化达到解题目的。

  来源:京翰教育中心


本文来自:逍遥右脑记忆 http://www.jiyifa.net/gaozhong/318320.html

相关阅读:高中数学分层教学的实践与体会