高中数学课程要设立“数学探究”、“数学建模”等学习活动,为学生形成积极主动的、多样的学习方式进一步创造有利的条件,以激发学生的数学学习兴趣,鼓励学生在学习过程中养成独立思考、积极探索的习惯。高中数学课程应力求通过各种不同形式的自主学习、探究活动,让学生体验数学发现和创造的历程,发展他们的创新意识。
一、在数学应用和联系实际中开展研究性学习
研究性学习强调理论与社会、科学和生活实际的联系,特别关注环境问题、现代科技对当代生活的影响以及与社会发展密切相关的重大问题。要引导学生关注现实生活,亲身参与社会实践性活动。对于高中学生而言,要开展研究性学习,必须培养他们的实践能力。具体说来,主要包括以下几个方面的能力:发现问题、提出问题、分析问题和解决问题的能力;动手操作的能力;参加社会活动的能力。
例如让学生尝试研究“银行存款利息和利税的调查”,先让学生制定调查研究专题,从教科书、课外读物以及网络中查找有关银行存款利息和利税的内容,由学生自己根据实际需要,分组到不同的银行进行原始数据的搜集,通过对原始数据的分析、整理,建立一个数学模型。
在研究过程中,学生的积极性以及创新能力得到了充分的展示,使他们发现了研究数学的乐趣,也享受到了成功的喜悦。
二、在抽象问题的探索中运用数学思想方法
孔子说:“疑,思之始,学之端。”南宋著名教育家朱熹认为“大疑则可大进”。必须提倡学生问,还要善于培养学生发现问题和解决问题的能力,不断地深化思维,增强学生的数学思想方法的应用意识和创新意识,并希望能够上升为一种自觉地对客观事物中蕴藏的一些数学模式做出思考和判断的能力。
在课堂教学过程中,表层知识的发生过程实际上也是思想方法的发生过程。像概念的形成过程、新旧知识的对比过程、结论的推导过程、规律的被揭示过程、解题思路的思考过程等,都是向学生渗透数学思想方法、训练思维的极好机会。此时提高学习效果,往往会起到事半功倍的作用。
如讲到高中数学第一册(上)“反函数”这一节内容时,学生思维往往搞不清为什么有的函数有反函数、有的函数没有反函数。这时我积极引导学生,让他们知道映射是函数,反函数作为一种函数,也必须符合函数的定义,从而推导出在定义域和值域间只有一一映射的函数才有反函数。于是,在求y=x2(x≤0)的反函数时能否把条件x≤0去掉?结论当然是不能,如果去掉,则给一个y值时,就不是一个x值与其对应,不是一一映射,就没有反函数。
来源:233网校论文中心,作者:王翠夏
本文来自:逍遥右脑记忆 http://www.jiyifa.net/gaozhong/319957.html
相关阅读:在快乐中学习数学