面面平行的定义:
如果两个平面无公共点,则称这两个平面平行。
图形表示:

面面平行的判定定理:
(1)如果一个平面内的两条相交直线与另一个平面平行,那么这两个平面平行; (线面平行面面平行),
(2)如果一个平面内有两条相交直线分别平行于另一平面内的两条直线,那么这两个平面平行。(线线平行面面平行),
(3)垂直于同一条直线的两个平面平行。
(4)平行于同一个平面的两个平面平行。
符号语言:
(1) ;(3)
;(4)
面面平行的性质定理:
(1)如果两个平行平面同时与第三个平面相交,那么它们的交线平行。 (面面平行线线平行)
(2)如果两个平面平行,那么某一个平面内的直线与另一个平面平行。 (面面平行线面平行)
(3)如果两个平行平面中有一个平面垂直于一条直线,那么另一个平面也垂直于这条直线。
符号语言:
(1) ;(2)
;(3)
线线平行、线面平行、面面平行间的关系:

由于三者之间相互沟通、相互联系,因此立体几何问题的解决往往一题多解(证)。
证明面面平行的常用方法:
(1)反证法,即
(2)判定定理或推论,即
(3)“垂直于同一直线的两个平面平行”这一性质,即
(4)向量法,两个平面的法向量平行,则这两个平面平行。
本文来自:逍遥右脑记忆 http://www.jiyifa.net/gaozhong/326159.html
相关阅读:数学课堂导入的方法
閻楀牊娼堟竟鐗堟閿涙碍婀伴弬鍥у敶鐎瑰湱鏁辨禍鎺曚粓缂冩垹鏁ら幋鐤殰閸欐垼纭€閻氼噯绱濈拠銉︽瀮鐟欏倻鍋f禒鍛敩鐞涖劋缍旈懓鍛拱娴滄亽鈧倹婀扮粩娆庣矌閹绘劒绶垫穱鈩冧紖鐎涙ê鍋嶇粚娲?閺堝秴濮熼敍灞肩瑝閹枫儲婀侀幍鈧張澶嬫綀閿涘奔绗夐幍鎸庡閻╃ǹ鍙у▔鏇炵伐鐠愶絼鎹㈤妴鍌氼洤閸欐垹骞囬張顒傜彲閺堝绉圭€氬本濡辩悮顓濋暅閺夛拷/鏉╂繃纭舵潻婵婎潐閻ㄥ嫬鍞寸€圭櫢绱濈拠宄板絺闁線鍋栨禒鎯板殾 4509422@qq.com 娑撶偓濮ら敍灞肩缂佸繑鐓$€圭儑绱濋張顒傜彲鐏忓棛鐝涢崚璇插灩闂勩們鈧拷