对数学的意义及课程性质作了修订
修订后数学意义表述为:“数学是研究数量关系和空间形式的科学。数学与人类发展和社会进步息息相关,随着现代信息技术的飞速发展,数学更加广泛应用于社会生产和日常生活的各个方面。数学作为对于客观现象抽象概括而逐渐形成的科学语言与工具,不仅是自然科学和技术科学的基础,而且在人文科学与社会科学中发挥着越来越大的作用。特别是20世纪中叶以来,数学与计算机技术的结合在许多方面直接为社会创造价值,推动着社会生产力的发展”。
数学课程的性质表述为:“义务教育阶段的数学课程是培养公民素质的基础课程,具有基础性、普及性和发展性。数学课程能使学生掌握必备的基础知识和基本技能,培养学生的抽象思维和推理能力,培养学生的创新意识和实践能力,促进学生在情感、态度与价值观等方面的发展。义务教育的数学课程能为学生未来生活、工作和学习奠定重要的基础。”
重新阐述了数学课程的基本理念
将实验稿6条基本理念中关于数学学习和数学教学两条合并成一条,变成5条基本理念。关于数学课程与教学的总体要求表述为:人人都能获得良好的数学教育,不同的人在数学上得到不同的发展。
提出了“四基”目标
课程目标的总体设计仍然保持总体目标和学段目标的结构。注重过程性目标和结果性目标相结合,具体分为知识技能、数学思考、问题解决、情感态度4个方面。在课程目标中明确提出使学生“获得适应社会生活和进一步发展所必需的数学的基础知识、基本技能、基本思想、基本活动经验。”
梳理了10个核心概念
课程标准把课程内容分为4个部分:数与代数、图形与几何、统计与概率、综合与实践。又提出了与内容有关的10个核心概念:数感、符号意识、空间观念、几何直观、数据分析观念、运算能力、推理能力、模型思想以及应用意识和创新意识,并且对每一个核心概念都给出了较为明确的解释。
体例与结构的变化
在“前言”部分除修改了对数学的意义与价值、数学教育的功能、数学课程的基本理念以及数学课程设计思路的表述外,还增加了“数学课程的性质”。
整合3个学段的实施建议,统一撰写了教学建议、评价建议和教材编写建议,并增加了课程资源开发与利用的建议。
将“行为动词”和“案例”等统一放入附录。
课程内容结构上的变化
“数与代数”部分在内容结构上没有变化。“图形与几何”部分第一、二学段内容结构没有变化。第三学段,将原来的4个部分调整为3个部分,第三部分中的“图形的性质”基本上是整合了实验稿中的第一和第四部分而成,而其他两个部分与原来的两部分对应。
“统计与概率”内容结构作了较大调整,使3个学段内容学习的层次性更加明确。
“综合与实践”内容作了较大修改,明确综合与实践是一类以问题为载体、以学生自主参与为主的学习活动。
第一学段具体内容的修改
第一学段内容总体上修改不大,增删内容大致相当,数与代数内容略有增加,统计与概率内容有明显减少。
统计与概率等内容适当降低难度:第一学段统计与概率领域内容大幅减少,由原来的11条具体要求减少为现在的3条。对于统计内容也降低了难度,平均数、条形统计图等内容也移到第二学段学习。
增加的内容包括:“知道用算盘可以表示多位数”,“能结合具体情境比较两个一位小数的大小,能比较两个同分母分数的大小”。
调整的内容包括:估算的要求改为“能结合具体情境,选择适当的单位进行简单估算,体会估算在生活中的作用”。强调了“选择适当的单位进行简单估算”,明确估算的重点,一是要有具体的情境,二是在一个确定的情境中,根据实际需要选择适当的单位进行估算。“能口算一位数乘除两位数”从第二学段移到第一学段。
在第一学段增加“认识小括号,能进行简单的整数四则混合运算(两步)”,第一学段认识小括号,在第二学段认识中括号。“结合实例认识面积,体会并认识面积单位厘米、分米、米,能进行简单的单位换算”。增加了分米的认识,将千米、公顷的认识移到第二学段,并降低了要求。
第二学段具体内容修改
统计与概率等内容适当降低难度。第二学段统计与概率内容,删除了中数、中位数的内容和“能设计统计活动,检验某些预测;初步体会数据可能产生误导”。还有一些在表述方式和具体要求上作了一些调整。一是强调了在搜集数据中运用适当的方法:“会根据实际问题设计简单的调查表,能选择适当的方法(如调查、试验、测量)收集数据”。二是调整了对可能性的要求,对于可能性要求“列出简单随机现象中所有可能发生的结果”,与原来的要求相比相对降低了。
删除“了解两点确定一条直线和两条相交直线确定一个点”。“了解两点确定一条直线”放在第三学段作为进行演绎证明的基本事实之一。
增加或调整的内容主要包括:增加“在具体情境中,了解常见的数量关系:总价=单价×数量、路程=速度×时间,并能解决简单的实际问题”。增加这一要求,为小学数学课程与教学中的问题解决提供了一个重要基础。
增加“结合简单的实际情境,了解等量关系,并能用字母表示”。增加“了解圆的周长与直径的比为定值”,强调学生在探索周长与直径比的过程中认识圆周率。
第三学段具体内容的调整
第三学段4个领域中一些具体内容的变化主要表现在:一是删除了一些条目,二是新增了一些内容,三是对相同内容的要求不同。
删除的主要内容:数与代数领域删除了“能对含有较大数字的信息作出合理的解释与推断”,“了解有效数字的概念”,“能够根据具体问题中的数量关系”,“列出一元一次不等式组”,“解决简单的问题”。图形与几何领域删除了关于梯形、等腰梯形的相关要求,探索并了解圆与圆的位置关系,关于影子、视点、视角、盲区等内容,对雪花曲线和莫比乌斯带等图形的欣赏,关于镜面对称的要求,等腰梯形的性质和判定定理等内容。统计与概率领域删除了会计算极差、会画频数折线图等内容。
增加的内容包括两个部分,一个是必学内容,一个是选学内容。
增加的必学内容主要有:数与代数领域包括知道|a|的含义(这里a表示有理数),最简二次根式和最简分式的概念,能进行简单的整式乘法运算(一次式与二次式相乘),能用一元二次方程根的判别式判别方程是否有实根和两个实根是否相等,会利用待定系数法确定一次函数的解析表达式。图形与几何领域增加的内容包括:会比较线段的大小,理解线段的和、差以及线段中点的意义;了解平行于同一条直线的两条直线平行;会按照边长的关系和角的大小对三角形进行分类;了解并证明圆内接四边形的对角互补;了解正多边形的概念及正多边形与圆的关系;过一点作已知直线的垂线;已知一直角边和斜边作直角三角形;作三角形的外接圆、内切圆;作圆的内接正方形和正六边形。统计与概率领域增加的内容包括:能用计算器处理较为复杂的数据;理解平均数的意义,能计算中位数、众数。
增加的选学内容主要有:数与代数领域的能解简单的三元一次方程组,了解一元二次方程的根与系数的关系,知道给定不共线三点的坐标可以确定一个二次函数。图形与几何领域的了解相似三角形判定定理的证明,探索并证明垂径定理,探索并证明切线长定理等。选学内容的设置,就是希望为一些有兴趣、有能力而且有愿望的学生进一步探索、学习的,这些内容不要求面对所有学生。(来源:中国教育报)
本文来自:逍遥右脑记忆 http://www.jiyifa.net/gaozhong/346746.html
相关阅读:数学导学互动教学培养学生的实践能力