解读高中数学中的抽象函数

编辑: 逍遥路 关键词: 高中数学 来源: 高中学习网


抽象函数问题是高中函数中的一类综合性比较强的问题,学生往往感到无从下手。解决这类问题要求学生抽象思维能力、综合运用数学知识的能力较强,但是,教师只要引导学生准确掌握所学基本初等函数的图象和性质,分清是哪一类函数的抽象,可以优化思路,使问题难度降低,从而得以解决。

  

  下面举例说明:

  

  形如f(x+y)=f(x)+f(y)+m(m为常数)

  

  思路:看作一次函数的抽象,联想一次函数的图象及性质。特例:m=0时,联想过原点的直线。

  

  例1.函数f(x)对任意的a、b∈R,都有f(a+b)=f(a)+f(b)-1,并且当x>0时,f(x)>1.

  

  (1)求证:f(x)是R上的增函数;

  

  (2)若f(4)=5,解不等式f(3m2-m-2)<3.

  

  (1)证明:设x1<x2,则△x=x2-x1>0,

  

  ∵x>0时,f(x)>1

  

  ∴f(x2-x1)>1,

  

  ∵f(x2)-f(x1)=f(x1+x2-x1)-f(x1)

  

  =f(x1)+f(x2-x1)-1-f(x1)

  

  =f(x2-x1)-1>0

  

  (2)∵f(4)=f(2+2)=2f(2)-1=5,∴f(2)=3.

  

  又f(x)是R上的增函数,

  

  ∴f(3m2-m-2)<3f(3m2-m-2)<f(2)

  

  ∴f(x)是R上的增函数.∴f(3m2-m-2)<3

  

  f(3m2-m-2)<f(2)

  

  3m2-m-2<2-1<m<

  

  解得不等式解集为-1<m<4/3.

  

  点评1.回归定义,充分运用已知条件:x>0时,f(x)>0△x=x2-x1>0,f(x2-x1)>1

  

  2.等价转化思想:运用函数的单调性,去掉函数符号,转化为解关于m的不等式。

  

  思路:联想幂的运算性质,可看作指数函数的抽象,结合指数函数的图象和性质进行解题。

  

  抽象函数问题,需要综合运用函数的奇偶性,单调性,周期性,对称性等性质,应用分析,逻辑推理,联想类比等数学思想方法。

  

  常见题型有:

  

  ①求抽象函数的某一函数值:根据函数结构特征,用赋值法。

  

  ②判(证)抽象函数的单调性:类比所学具体函数,充分运用已知条件,对变量合理赋值。

  

  ③解关于抽象函数的不等式:一看定义域,一看单调性。

  

  只要掌握相应的解题策略,问题便会化难为易,迎刃而解。
本文来自:逍遥右脑记忆 http://www.jiyifa.net/gaozhong/426239.html

相关阅读:备战2016高考:数学试卷答题技巧