终边相同的角的表示:
所有与角α终边相同的角,连同角α在内,可构成一个集合即任一与角α终边相同的角,都可以表示成角α与整数个周角的和。
注:(1)k∈Z;
(2)α是任意角;
(3)k?360°与α之间是“+”;
(4)终边相同的角不一定相等,但相等的角的终边一定相同,终边相同的角有无数多个,它们的差是360°的整数倍。
举例说明:
举出画出与30°角的终边相同的一些角吗?390°角的终边、-330°角的终边。
390°=30°+360°
-330°=30°-360°
30°=30°+0×360°
1470°=30°+4×360°
-1770°=30°-5×360°
由特殊角30°看出:所有与30°角终边相同的角,连同30°角自身在内,都可以写成30°+
常见结论:
(1)角α为锐角,则α一定是第一象限的角,反之不一定成立。故角α是锐角是角α为第一象限角的充分不必要条件。
(2)角α为钝角,则α一定是第二象限的角,反之不一定成立。故角α是钝角是角α为第二象限角的充分不必要条件。
(3)第一象限的角不一定是正角。
本文来自:逍遥右脑记忆 http://www.jiyifa.net/gaozhong/480390.html
相关阅读:怎样上好一堂数学课
閻楀牊娼堟竟鐗堟閿涙碍婀伴弬鍥у敶鐎瑰湱鏁辨禍鎺曚粓缂冩垹鏁ら幋鐤殰閸欐垼纭€閻氼噯绱濈拠銉︽瀮鐟欏倻鍋f禒鍛敩鐞涖劋缍旈懓鍛拱娴滄亽鈧倹婀扮粩娆庣矌閹绘劒绶垫穱鈩冧紖鐎涙ê鍋嶇粚娲?閺堝秴濮熼敍灞肩瑝閹枫儲婀侀幍鈧張澶嬫綀閿涘奔绗夐幍鎸庡閻╃ǹ鍙у▔鏇炵伐鐠愶絼鎹㈤妴鍌氼洤閸欐垹骞囬張顒傜彲閺堝绉圭€氬本濡辩悮顓濋暅閺夛拷/鏉╂繃纭舵潻婵婎潐閻ㄥ嫬鍞寸€圭櫢绱濈拠宄板絺闁線鍋栨禒鎯板殾 4509422@qq.com 娑撶偓濮ら敍灞肩缂佸繑鐓$€圭儑绱濋張顒傜彲鐏忓棛鐝涢崚璇插灩闂勩們鈧拷