1.函数思想
因为数列的通项公式、前n项和公式都是关于n的函数,所以一些数列问题可从函数的角度出发,运用函数思想来解答.相关的问题有:数列的单调性问题、求基本量问题、最值问题等.上述问题可利用数列所对应函数的特征、数列所对应函数的性质来解答.
2.方程思想
等差、等比数列都有5个基本量,运用方程思想可做到“知三求二”.在已知某些量的情况下,通过列方程或方程组求解其它量.此外,本章经常使用的待定系数法其实就是方程思想的体现.
3.转化与化归思想
本章的转化思想的运用,主要体现在把非特殊数列问题转化成特殊数列问题来解答,如:求递推数列的通项公式可通过构造转化成特殊数列求通项公式,非特殊数列的求和问题可转化成特殊数列的求和问题等.化归思想指的是把问题转化到研究对象最基础知识点上去解决,如:用等差、等比数列及等差、等比中项的定义,证明一个数列是等差或等比数列等.
4.分类讨论思想
本章的分类讨论思想主要体现在解决一些含参数列问题上,尤其是等比数列求和或相关问题时,若含参数,一定不要忽略对q=1的讨论.
5.数形结合思想
借助数列所对应函数的图象解答某些问题,会十分的直观、快捷.如:解答等差数列前n项和的最值问题,我们可结合二次函数的图象.
6.归纳思想
归纳思想是指由个别事实概括出一般性结论的数学思想.在本章中,根据数列的前若干项归纳数列的通项公式,或根据若干图形中子图形的个数归纳第n个图形中子图形的个数(其实也是求通项公式)都是运用归纳思想的典型例子.
7.类比思想
类比思想是指由一类对象具有某些特征,推出与它相似的某一对象也具有这些特征的数学思想,它的推理方式是由特殊到特殊的推理.等差数列和等比数列作为两类特殊的数列,有很多相似之处,比如,在等差数列中,若,则;在等比数列中,若,则有.通过类比可推导出很多有用的结论,发现很多有趣的性质.
8.整体思想
在研究数列(是等差或等比数列的前k项的和)时,就利用了整体思想,即把看作数列中的一项,依此类推,即可得出此数列的特征.
首页上一页12下一页末页共2页
本文来自:逍遥右脑记忆 http://www.jiyifa.net/gaozhong/569667.html
相关阅读:数学学习的基本步骤