数学特长部数学教师与美

编辑: 逍遥路 关键词: 高中数学 来源: 高中学习网


  数学美源于数学,是数学的本质属性.数学的美育价值也愈来愈被教育界所注目.培养学生的数学美感,也是数学审美教育的目的之所在.而审美主体(学生)从审美对象(数学)中获得美感的“桥梁”就是数学教师.所以,在数学审美教育中充分认识和肯定数学教师的作用和明确对数学教师的需求是十分必要的.

  一、数学审美教育中教师的重要作用

  我国当代著名美学家朱光潜先生认为:美既不在物,也不在心,而在心与物之间.数学本身的美只是美的条件,只有加上人的主观意识作用,才有美的实现.

  在数学审美教育中,教师的任务就是指导学生的审美活动,端正审美观念,提高学生的审美能力和审美素质,塑造完美人格,成为有数学素养的人.所以说,数学审美教育实质上是一种情感教育,是通过教师来实现从学生的感性的、直观的性质向社会的、理性的性质提升.

  二、数学审美教育对数学教师美的要求

  1.仪表、姿态美

  这是由美的特征之一——美的形象性决定的.人们在欣赏美的事物时,通过感觉、知觉、直觉等一系列的审美心理活动,感觉到它的具体、生动的形象,这就是美的形象性.

  身为教师,仪表要纯朴、清新、淡雅、自然,给人一种整洁、大方的美感.切忌不修边幅,消沉萎糜;站、立、行的姿态要端庄、文雅.步履蹒跚,动作迟钝都不能引起美感.这样从你站在讲台上的那一刻,就在学生的心中唤起一种审美愉悦,最终影响学生的思想感情.正所谓良好的开端等于成功的一半.

  2.创设美的情境

  这是由美的第二个特征——美的感染性决定的.

  表面上看,学生学习以追求事物的“真”为目的,似乎不需要情感、想象的直接参与,只是从感知到逻辑思维.而实际上,学生审美是投入自己主动心理功能的积极活动过程,是一种非自由美的创造.只有在学生的审美过程中,将其情感和理想与教师相调和而引起感情波动,才能具备美的感染性这一特征,从而产生美感.教师要能创设一种轻松、愉快的美的意境,这样才能形成学生丰富的想象,所谓寓义于情,而义愈至;寓情于景,而景愈深.

  3.语言美

  教学是科学,也是艺术.语言之美是艺术美的外在表现,正如黑格尔所说:美的世界必须通过视觉和听觉,才有力量从人的心灵深处唤起反应和回响,而教师恰是运用语言这一载体来传播美的.

  数学教师语言的准确、严谨、鲜明性自不待言,此外,还应注意以下几个方面:

  (1)语言的节奏性.语言的节奏能引起人的情绪变化,美感的形成在一定程度上随人的心境情绪不同而不同.美的节奏能调节人的良好情绪.人感受的最适度的节奏是70—90次/分,这样,能使人产生“悦目明心”之感.

  (2)语言的形象性.教师用形象的语言来描述、揭示抽象的数学内容,能调动学生的思维,使学生在欣赏数学美的同时留有积极创造的余地,以发挥想象力.

  (3)语言的丰富性.学生的审美创造、审美欲望的强弱与产生的愉悦程度成正比.教师运用暗示、含蓄、幽默的语言及语调的抑扬变化,都能唤起学生的情感,获得美的享受,并对前面展开的真理感到惊奇,如苏霍姆林斯基所言:具有特殊的能动性的创想能力.

  4.道德美

  康德认为:美是道德的象征.教师的道德美应包括为人师表的品行美,执著追求的毅力美,甘为人梯的奉献美,教书育人的理想美.教师在教学过程中要把自身的道德原则渗透到审美活动中去,使学生不仅在理智上认为正确该遵循,而且在情感上热爱追求,以达到启迪心智的目的,使学生的道德境界变得崇高.

  5.才识美

  荀子云:君子之美,以美其身.教师不仅要有健康的情感,高尚的品行,还要有丰富的知识和出众的才能.这是引导学生认识、发现欣赏和创造美的有力保证.

  (1)学习审美理论.教师要对学生进行审美教育,首先必须明确什么是美,美的标准是什么,科学的审美依据的原则有哪些.只有自身树立起科学的审美观,并应用于审美教育教学实践,才能正确地引导学生去欣赏、创造美.正如马克思所说的:如果你想欣赏艺术,必须成为在艺术上有修养的人.

  (2)具有丰富的数学史、文学史的知识充实之谓美,一个表面平平的教师,刚开始时未必能引起学生的注意.但当听到他那学识丰富的谈吐,看到充满智慧的神情,心中的敬意便油然而生了.学习数学史,有助于更好地了解数学的发生、发展过程,增强理性认识,更深刻地揭示数学美的逻辑结构及相互联系.而读文学作品,接触好的艺术水平高的文学佳作,能提高自身的艺术修养水平,有助于数学审美教育.

  总之,数学教师只有成为外在美与内在美的统一体,才能适应数学审美教育的要求,才能使学生心向往之,情渴慕之,行仿效之,使学生不仅有一双善于捕捉美的眼睛,而且有一颗感受美的心灵,成为具有数学素养的人.

  来源:233网校论文中心


本文来自:逍遥右脑记忆 http://www.jiyifa.net/gaozhong/589109.html

相关阅读:现代与传统数学教学的有机结合