摆动数列的定义:
从第2项起,有些项大于它的前一项,有些项小于它的前一项的数列叫做摆动数列。
巧用(-1)n求摆动数列的通项:
在数列中,我们经常会碰到求形如:1,-1,1,-1,…,或-1,1,-1,1,…,等数列的通项,很显然,我们只要利用(-1)n进行符号的调整,就能很快求出数列的通项公式,我们在其它摇摆数列中也可以巧妙地利用(-1)n求出通项公式。
相关高中数学知识点:常数数列
常数列的定义:
各项相等的数列叫做常数列。
构造常数数列巧求数列的通项公式:
非零常数列既是公比为1的等比数列也是公差为0的等差数列。在数列{an}中,若an+1=an,则数列{an}为常数列,其通项公式为an=a1。在求某些递推数列的通项公式时,若能构造出一个新的常数列,便能简捷地求出通项公式。
相关高中数学知识点:递增数列和递减数列
递增数列的定义:
一般地,一个数列{an},如果从第2项起,每一项都大于它的前一项的数列叫做递增数列。
递减数列的定义:
如果从第2项起,每一项都小于它的前一项的数列叫做递减数列。
单调数列:
递增数列和递减数列通称为单调数列.
数列的单调性:
1.对单调数列的理解:数列是特殊的函数,特殊在于其定义域为正整数集或它的子集.有些数列不存在单调性.有些数列在正整数集上有多个单调情况,有些数列在正整数集上单调性一定;
2.单调数列的判定方法:已知数列{an}的通项公式,要讨论这个数列的单调性,即比较an与an+1的大小关系,可以作差比较;也可以作商比较,前提条件是数列各项为正。
本文来自:逍遥右脑记忆 http://www.jiyifa.net/gaozhong/617241.html
相关阅读:浅谈数学教学应用意识和能力的培养