化学所杨振忠研究员和美国Tulane大学化工系卢云峰教授,在国家自然科学基金委海外杰出青年基金、国家杰出青年基金、中国科学院方向性创新项目的支持下,自2000年开始着眼于腔体结构与材料领域开展合作研究,在有序纳米孔材料和中空微球复合体系方面取得了一系列研究进展。
在有序纳米孔复合体系方面,提出以多孔阳极氧化铝膜为模板,结合无机物的溶胶/凝胶和嵌段共聚物的自组装过程,制备了一维纳米孔结构的二氧化硅纤维和管及其阵列体系,实现了产物形貌和纳米孔结构的可控调节。在空腔内引入半导体二氧化钛,为功能化复合纳米线的制备和纳米孔材料在分离等方面的应用开辟了新思路和方法(图1)(Angew.Chem.Int.Ed.2003,42,4201)。进一步研究了在氧化铝膜受限空间内纳米结构的演化过程和形态,研究结果在Chem.Commun.2005,166发表并作为firstinsidecoverpage,论文发表一个月内被高频率网络点击同时被列为topten文章。与此同时,他们围绕着纳米孔材料复合功能化开展了合作研究。以有序纳米孔二氧化硅为模板,结合电沉积或化学沉积,制备了金属(Pd、Pt等)和半导体(如CdSe等)等功能材料的三维纳米线网络结构,为纳米尺度的功能器件开发奠定了基础,有望在光电和热电装置、传感和高密度信息存储器等领域得到应用(图2)(Angew.Chem.Int.Ed.2004,43,6169)。以含有可聚合的双炔基团的无机功能单体制备有序纳米孔复合材料,实现了材料的可逆温度响应变色(J.Am.Chem.Soc.2005,127,12782)。
在中空微球复合体系方面,提出以核/壳凝胶微粒为模板,利用凝胶的可渗透性和容易与功能物质复合等特点,制备新型核/壳复合功能二氧化钛微粒和相应的中空微球。与传统的layer-by-layer(LBL)沉积技术相比,解决了空腔尺寸不可控的关键问题。发现在溶胶/凝胶过程中,电场可以诱导球壳形成多孔结构(Angew.Chem.Int.Ed.2003,42,1943),为其进一步应用奠定了基础。利用该方法可制备具有响应特性的多孔中空凝胶、二氧化硅、导电聚苯胺及其复合的中空微球(Adv.Funct.Mater.2003,13,949)。为了克服中空微球壳层易破的缺点,进一步提出利用多孔中空微球作模板,通过控制反应产物不同沉积地点,而得到多种形态的中空球(图3)(Adv.Funct.Mater.2005,15,1523)。对多孔中空微球模板的外层和内层进行凝胶化处理,进一步与功能物质复合,溶剂溶解或高温烧结除去模板后制得双层结构的中空微球(图4)(Angew.Chem.Int.Ed.2005,44,6727)。本方法具有普适性,将在中空微球的组成(光电磁特性、高性能聚合物壳体)、尺寸(亚微米/微米)和形状(球/椭球)等方面的控制制备发挥重要作用
本文来自:逍遥右脑记忆 http://www.jiyifa.net/gaozhong/629961.html
相关阅读:2015年高三化学复习碱金属元素方程式