【摘要】高中学生数学创新能力的培养贯穿于整个数学课堂教学过程中,在数学教学过程中,教师应特别重视对学生创新能力的培养,使每一个学生都养成独立分析问题、探索问题、解决问题和延伸问题的习惯。数学创新能力的培养相比数学知识的传授更重要,数学创新能力的培养有利于学生形成良好的数学思维品质以及运用数学思想方法的能力。
【关键词】高中数学教学,创新能力的培养
创新即原始性的科学发现和原始性的技术发明,是指在基础研究和关键技术领域取得前人所没有的发现或发明。创新是国家竞争力的源头。我们已身处知识经济时代,而知识经济的核心就是创新,创新教育??[1]?已成为当今教育教学改革的目标取向,全面推行的高中新课程改革,为创新教育有效的推进奠定了基础。数学教育是创新教育的主阵地之一,因此,在数学教学中培养学生的创新能力具有重要意义。心理学??[2]?研究指出,能力分一般能力和特殊能力。一般能力是指顺利完成各种活动所必备的基本心理能力;特殊能力是指顺利完成某种特殊活动所必备的能力。在数学教育领域内,一般能力包括学习新的数学知识的能力,探究数学问题的能力,应用数学知识解决实际问题的能力,提高这些能力将大大推动学生素质的提高。数学创新能力是数学的一般能力,包括对数学问题的质疑能力、建立数学模型的能力(即把实际问题转化为数学问题的能力)、对数学问题猜测的能力等,在数学教学过程中,教师应特别重视对学生创新能力的培养,使每一个学生都养成独立分析问题、探索问题、解决问题和延伸问题的习惯。让所有的学生都有能力提出新见解、发现新思路、解决新问题。数学创新能力的培养相比数学知识的传授更重要,数学创新能力的培养有利于学生形成良好的数学思维品质以及运用数学思想方法的能力。
1.数学创新能力的培养,首先在教师教学观念的更新
费赖登塔尔说过:“数学知识不是教出来的,而是研究出来的”。教学即研究,而不是现成知识技能的传递,哪怕所传递的知识是很好的,教学的核心就是催生学生新观念的产生,学生不是装知识技能的“容器”,教师也不是“填装人”,更新了教育观念,教师才会从“指挥者”走向“引导者”,由重“传递”向重“发展”转变,由重“结论”向重“过程”转变,由重教师“教”向重学生“学”转变。创新教育是以培养人创新精神和创新能力为价值取向的教育,其核心是创新能力的培养,从这个意义上理解,在数学教学中对学生施以引导和影响,促使他们去认识数学领域各种观念、思想、规律、方法的发生成长过程,(简接的)体验数学家是怎样发现新问题、提出问题、解决新问题、归纳总结成一般规律,再回到实践中去检验规律,在这个过程中教师要影响、引导学生,而教师首先必须具有创新意识。改变传统教学中以知识结论传授为主线的传递性教学思路,而采取探究、研究性教学。
2.数学学科的创新教育??[3]?要突出在创新能力训练方法的引导上
需教无定法、学无定法,但在学生的创新能力训练方法上加以引导是十分必要的,我的做法是:
2.1努力提高自学能力。
阅读自学是一种重要的学习方式,人的一生不可能都有教师辅导的,很多知识还是靠自己钻研,积极思考,主动学习,不断积累得来的,所以我们的老师应鼓励学生自学,并给予必要的指导,使学生不断提高自学能力,培养学生的创新能力,培养学生的创新能力,实践表明,自学能力强的同学,他们的学习主动性、自觉性强,学习的深度,广度就强,学习悟性就强,学习技能就强。
教师要对所探究内容做深度思考。如引导学生进行研究性课题中的“欧拉公式的发现”一节学习。教师首先要问自己,当时的那么多数学家中,为什么唯有欧拉能发现公式?他是怎样发现的?是否有观念和方法上的创新?对一个多面体,以前人们认为他是由“面”组成的一个不变形的“钢体”,而欧拉跳出前人的观念,认为多面体的面是由弹性十分好的橡皮薄膜做的,这样的话,可向其中充气让其连续变形,还可把多面体沿一条棱撕开,展平放在平面上,这样多面体顶、面、棱之间的关系V+F-E=2就得出了。从这个过程可看出,欧拉之所以能发现公式首先做了观念的创新,认为多面体的面不是“钢体”不变,而是橡皮薄膜做的可伸展。另一个是在新观念下的方法创新,把多面体当作玩童手中的玩具,向其中充气、撕开。所以观念和方法的创新是欧拉公式产生的原因。这些实例,是开拓学生创新思路的最好范本。对学生创新思想和行为评价上要宽泛。每一个合乎情理的新发现或别出新裁的观察角度等等都是创新,不在于这一问题及其解决是否别人做过,而关键在于这一问题及其解决对于学生个人来说是否新颖,是否有观念和方法的创新。
2.2反弹琵琶,引发逆向思维。
逆向思维,是指采用与通常情况下的普遍习惯的单向思维完全相反的思路,从对立的、完全相反的角度思考和探索问题的思维。这种思维方法,看似荒唐,实际上是一种打破常规的,非常奇特而又绝妙的创新思维方法。
我们的学生长期以来形成了思维定势,提不出与众不同的见解,吃别人咀嚼过的东西,毫无新意。因此,在教学过程中,教师要注意引导学生打破传统的、常规的思维的束缚,大胆地反弹琵琶,从问题的相反方向深入地进行探索和挖掘,得出与众不同的见解。
2.3旁敲侧击,引发侧向思维。
侧向思维,是指在特定条件下,通过旁敲侧画、曲径通幽的方式另辟蹊径,将思维流向由此及彼,从侧面扩展,从新的角度探索被人们忽视的解决问题的方法。它与逆向思维的区别在于,侧向思维是平行同向的,而逆向思维是逆向的。其特点是不受消极定势的影响,对一个问题从侧面进行换角度思考,随机应变地将思路转移到别人不易想到,比较隐蔽的方向去,以求突破现有的论证和观点,提出不同凡俗的新观念,获得新的结果,产生新的创造。画家齐百石说过:“画人所不画,不画人所画。”道出了他作画出新的秘诀。画画如此,数学亦然。引导学生做第一个吃螃蟹的人,教师在教学过程中就要注重学生运用侧向思维。
首页上一页12下一页末页共2页
本文来自:逍遥右脑记忆 http://www.jiyifa.net/gaozhong/646478.html
相关阅读:高中数学教学应加强对学生应用意识的培养