相交弦定理:
圆内的两条相交弦,被交点分成的两条线段长的积相等。
割线定理:
从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段的长的积相等。
割线长定理:
从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项。
切线长定理:
从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角。
应用相交弦定理、切割线定理及推论的证明题的解决方法较多,常见的有:
(1)找过渡乘积式证明等积式成立;
(2)为三角形相似提供对应边成比例的条件;
(3)利用等积式来证明有关线段相等
相交弦定理、切割线定理及它们的推论和切线长定理的应用:
相交弦定理、切割线定理及它们的推论和切线长定理一样,揭示了和圆有关的一些线段间的数量关系,这些定理的证明及应用又常常和相似三角形联系在一起,因此在解题中要善于观察图形,对复杂的图形进行分解,找出基本图形和结论,从而准确地解决问题.另外在和圆有关的比例线段的计算问题中,要注意方程的思想的运用
本文来自:逍遥右脑记忆 http://www.jiyifa.net/gaozhong/649477.html
相关阅读:高中数学知识点:函数的最值与导数的关系
鐗堟潈澹版槑锛氭湰鏂囧唴瀹圭敱浜掕仈缃戠敤鎴疯嚜鍙戣础鐚紝璇ユ枃瑙傜偣浠呬唬琛ㄤ綔鑰呮湰浜恒€傛湰绔欎粎鎻愪緵淇℃伅瀛樺偍绌洪棿鏈嶅姟锛屼笉鎷ユ湁鎵€鏈夋潈锛屼笉鎵挎媴鐩稿叧娉曞緥璐d换銆傚鍙戠幇鏈珯鏈夋秹瀚屾妱琚镜鏉�/杩濇硶杩濊鐨勫唴瀹癸紝璇峰彂閫侀偖浠惰嚦 4509422@qq.com 涓炬姤锛屼竴缁忔煡瀹烇紝鏈珯灏嗙珛鍒诲垹闄ゃ€�