函数的连续性定义:
(1)如果函数y=f(x)在点x=x0处及其附近有定义,并且满足,则称函数y=f(x)在点x=x0处连续;否则称y=f(x)在点x=x0处不连续,或间断点。
(2)如果函数f(x)在某一开区间(a,b)内每一点处都连续,就说函数f(x)在开区间(a,b)内连续,对于闭区间[a,b]上的函数f(x),如果在开区间(a,b)内连续,在左端点x=a处有,在右端点x=b处有,就说函数f(x)在闭区间[a,b]上连续。
3、如果f(x)是闭区间[a,b]上的连续函数,那么在闭区间[a,b]上f(x)一定有最大值和最小值。
函数的连续性的特点:
(1)f(x)在x0处有定义;
(2)f(x)在x0处的极限存在;
(3)f(x)在点x0处的极限等于函数值。
三大特点,缺一不可。
常用结论:
如果f(x)是闭区间[a,b]上的连续函数,那么在闭区间[a,b]上f(x)一定有最大值和最小值。
本文来自:逍遥右脑记忆 http://www.jiyifa.net/gaozhong/718266.html
相关阅读:高中数学应该如何学