平时做解答题就要多总结方法,可是书面的也总结了许多,在这儿我主要讲考试。我们做这些解答题的时候必须严格按照演绎推理的方式科学逻辑地进行解答和表述,可以说这里已经没有投机取巧的机会,但仍然有一些让我们多拿几分,夺取高分的策略哦。
1. 缺步解答
如果遇到一个很困难的问题,确实啃不动,一个聪明的解题策略是,将它们分解为一系列的步骤,或者是一个个小问题,先解决问题的一部分,能解决多少就解决多少,能演算几步就写几步,尚未成功不等于失败.特别是那些解题层次明显的题目,或者是已经程序化了的方法,每进行一步得分点的演算都可以得分,最后结论虽然未得出,但分数却已过半,这叫大题拿小分,你可以在实战中运用分析一下。
2. 跳步答题
解题过程卡在某一过渡环节上是常见的.这时,我们可以先承认中间结论,往后推,看能否得到结论.如果不能,说明这个途径不对,立即改变方向;如果能得出预期结论,就回过头来,集中力量攻克这一卡壳处。
由于考试时间的限制,卡壳处的攻克来不及了,那么可以把前面的写下来,再写出证实某步之后,继续有一直做到底,这就是跳步解答.也许,后来中间步骤又想出来,这时不要乱七八糟插上去,可补在后面,事实上,某步可证明或演算如下,以保持卷面的工整.若题目有两问,第一问想不出来,可把第一问作已知,先做第二问,这也是跳步解答的方法。
3.退步解答
以退求进是一个重要的解题策略.对于一个较一般的问题,如果你一时不能解决所提出的问题,那么,你可以从一般退到特殊,从抽象退到具体,从复杂退到简单,从整体退到部分,从参变量退到常量,从较强的结论退到较弱的结论.总之,退到一个你能够解决的问题,通过对特殊的思考与解决,启发思维,达到对一般的解决.为了不产生以偏概全的误解,应开门见山写上本题分几种情况。
4.逆向解答
对一个问题正面思考发生思维受阻时,用逆向思维的方法去探求新的解题途径,往往能得到突破性的进展.顺向推有困难就逆推,直接证有困难就反证.如用分析法,从肯定结论或中间步骤入手,找充分条件;用反证法,从否定结论入手找必要条件。
5.辅助解答
一道题目的完整解答,既有主要的实质性的步骤,也有次要的辅助性的步骤.实质性的步骤未找到之前,找辅助性的步骤是明智之举,既必不可少而又不困难.如:准确作图,把题目中的条件翻译成数学表达式,设应用题的未知数等。
书写也是辅助解答。书写要工整、卷面能得分是说第一印象好会在阅卷老师的心理上产生光环效应:书写认真学习认真成绩优良给分偏高.
考前建议:总之对待解答题既然没有投机取巧的可能,就要树立起一个能完全解答的题目一分不失,不能完全解答的题目分段、分步得分的思想意识,数学考试真正的难点就是解答题最后三个题的第二问、第三问的把关部分,对这几个把关的点可以采用一些非常规的方法(如有些探索性的问题,可以用特殊代替一般得到问题的结论,把结论写出来),这些非常规的方法虽然不能代替一般的演绎推理的方法,确可以使考生多得一些分数。
本文来自:逍遥右脑记忆 http://www.jiyifa.net/gaozhong/782562.html
相关阅读:高中数学破题技法之-西瓜开门 滚到成功-