高中数学知识点:数列的极限

编辑: 逍遥路 关键词: 高中数学 来源: 高中学习网


数列的极限定义(描述性的):


如果当项数n无限增大时,无穷数列的项an无限地趋近于某个常数a(即无限地接近于0),a叫数列的极限,记作,也可记做当n→+∞时,an→a。


数列的极限严格定义


即ε-N定义:对于任何正数ε(不论它多么小),总存在某正数N,使得当n>N时,一切an都满足,a叫数列的极限。


数列极限的四则运算法则:


,则
(1)
(2)
(3)
前提条件:(1)各数列均有极限,(2)相加减时必须是有限个数列才能用法则。



an无限接近于a的方式有三种:


第一种是递增的数列,an无限接近于a,即an是在常数a的左边无限地趋近于a,如n→+∞时,
第二种是递减数列,an无限地趋近于a,即an是在常数a的右边无限地趋近于a,如n→+∞时,是
第三种是摆动数列,an无限地趋近于a,即an是在无限摆动的过程中无限地趋近于a,如n→+∞时,



一些常用数列的极限:


(1)常数列A,A,A,…的极限是A;
(2)当时,
(3)当|q|<1时,;当q>1时,不存在;
(4)不存在,
(5)无穷等比数列{an}中,首项a1,公比q,前n项和Sn,各项之和S,则(只有在0<|q|<1时)。



本文来自:逍遥右脑记忆 http://www.jiyifa.net/gaozhong/854115.html

相关阅读:备战高考数学一轮备考五点建议