高考数学第二轮复习轨迹方程的求解知识点

编辑: 逍遥路 关键词: 高中数学 来源: 高中学习网


符合一定条件的点的全体所组成的集合,叫做满足该条件的点的轨迹.数学网高中频道收集和整理了轨迹方程的求解知识点,以便高三学生更好的梳理知识,轻松备战。

轨迹,包含两个方面的问题:凡在轨迹上的点都符合给定的条件,这叫做轨迹的纯粹性(也叫做必要性);凡不在轨迹上的点都不符合给定的条件,也就是符合给定条件的点必在轨迹上,这叫做轨迹的完备性(也叫做充分性).

【轨迹方程】就是与几何轨迹对应的代数描述。

一、求动点的轨迹方程的基本步骤

⒈建立适当的坐标系,设出动点M的坐标;

⒉写出点M的集合;

⒊列出方程=0;

⒋化简方程为最简形式;

⒌检验。

二、求动点的轨迹方程的常用方法:求轨迹方程的方法有多种,常用的有直译法、定义法、相关点法、参数法和交轨法等。

⒈直译法:直接将条件翻译成等式,整理化简后即得动点的轨迹方程,这种求轨迹方程的方法通常叫做直译法。

⒉定义法:如果能够确定动点的轨迹满足某种已知曲线的定义,则可利用曲线的定义写出方程,这种求轨迹方程的方法叫做定义法。

⒊相关点法:用动点Q的坐标x,y表示相关点P的坐标x0、y0,然后代入点P的坐标(x0,y0)所满足的曲线方程,整理化简便得到动点Q轨迹方程,这种求轨迹方程的方法叫做相关点法。

⒋参数法:当动点坐标x、y之间的直接关系难以找到时,往往先寻找x、y与某一变数t的关系,得再消去参变数t,得到方程,即为动点的轨迹方程,这种求轨迹方程的方法叫做参数法。

⒌交轨法:将两动曲线方程中的参数消去,得到不含参数的方程,即为两动曲线交点的轨迹方程,这种求轨迹方程的方法叫做交轨法。

*直译法:求动点轨迹方程的一般步骤

①建系建立适当的坐标系;外语学习网

②设点设轨迹上的任一点P(x,y);

③列式列出动点p所满足的关系式;

④代换依条件的特点,选用距离公式、斜率公式等将其转化为关于X,Y的方程式,并化简;

⑤证明证明所求方程即为符合条件的动点轨迹方程。

高考数学第二轮复习轨迹方程的求解知识点已经呈现在各位考生面前,希望同学们认真阅读学习,更多精彩尽在高考频道!


本文来自:逍遥右脑记忆 http://www.jiyifa.net/gaozhong/858256.html

相关阅读:学好高中数学的捷径