高中数学学习方法:对称问题

编辑: 逍遥路 关键词: 高中数学 来源: 高中学习网

各科成绩的提高是同学们提高总体学习成绩的重要途径,大家一定要在平时的练习中不断积累,小编为大家整理了高中数学学习方法:对称问题,希望同学们牢牢掌握,不断取得进步!

一、点关于已知点或已知直线对称点问题

1、设点P(x,y)关于点(a,b)对称点为P′(x′,y′),

x′=2a-x

由中点坐标公式可得:y′=2b-y

2、点P(x,y)关于直线L:Ax+By+C=O的对称点为

x′=x-(Ax+By+C)

P′(x′,y′)则

y′=y-(AX+BY+C)

事实上:∵PP′⊥L及PP′的中点在直线L上,可得:Ax′+By′=-Ax-By-2C

解此方程组可得结论 高二

(- )=-1(B≠0)

特别地,点P(x,y)关于

1、x轴和y轴的对称点分别为(x,-y)和(-x,y)

2、直线x=a和y=a的对标点分别为(2a-x,y)和(x,2a-y)

3、直线y=x和y=-x的对称点分别为(y,x)和(-y,-x)

例1 光线从A(3,4)发出后经过直线x-2y=0反射,再经过y轴反射,反射光线经过点B(1,5),求射入y轴后的反射线所在的直线方程。

解:如图,由公式可求得A关于直线x-2y=0的对称点

A′(5,0),B关于y轴对称点B′为(-1,5),直线A′B′的方程为5x+6y-25=0

`C(0, )

`直线BC的方程为:5x-6y+25=0

小编为大家整理的高中数学学习方法:对称问题就到这里了,希望同学们认真阅读,祝大家学业有成。


本文来自:逍遥右脑记忆 http://www.jiyifa.net/gaozhong/92819.html

相关阅读:高中数学学习方法:高考三轮复习各有侧重