一、增函数和减函数
一般地,设函数f(x)的定义域为I:
如果对于属于I内某个区间上的任意两个自变量的值x1、x2,当x1<x2时都有f(x1)<f(x2).那么就说f(x)在 这个区间上是增函数。
如果对于属于I内某个区间上的任意两个自变量的值x1、x2,当x1<x2时都有f(x1)>f(x2).那么就是f(x)在这个区间上是减函数。
二、单调区间
单调区间是指函数在某一区间内的函数值Y,随自变量X增大而增大(或减小)恒成立。如果函数y=f(x)在某个区间是增函数或减函数。那么就说函数y=f(x)在这一区间具有(严格的)单调性,这一区间叫做y= f(x)的单调区间。
一、指数函数的定义
指数函数的一般形式为y=a^x(a>0且≠1) (x∈R).
二、指数函数的性质
1.曲线沿x轴方向向左无限延展〈=〉函数的定义域为(-∞,+∞)
2.曲线在x轴上方,而且向左或向右随着x值的减小或增大无限靠近X轴(x轴是曲线的渐近线)〈=〉函数的值域为(0,+∞)
一、对数与对数函数定义
1.对数:一般地,如果a(a大于0,且a不等于1)的b次幂等于N,那么数b叫做以a为底N的对数,记作log aN=b,读作以a为底N的对数,其中a叫做对数的底数,N叫做真数。
2.对数函数:一般地,函数y=log(a)X,(其中a是常数,a>0且a不等于1)叫做对数函数,它实际上就是指数函数的反函数,因此指数函数里对于a的规定,同样适用于对数函数。
二、方法点拨
在解决函数的综合性问题时,要根据题目的具体情况把问题分解为若干小问题一次解决,然后再整合解决的结果,这也是分类与整合思想的一个重要方面。
一、幂函数定义
形如y=x^a(a为常数)的函数,即以底数为自变量 幂为因变量,指数为常量的函数称为幂函数。
二、性质
幂函数不经过第三象限,如果该函数的指数的分子n是偶数,而分母m是任意整数,则y>0,图像在第一;二象限.这时(-1)^p的指数p的奇偶性无关.
如果函数的指数的分母m是偶数,而分子n是任意整数,则x>0(或x>=0);y>0(或y>=0),图像在第一象限.与p的奇偶性关系不大,
本文来自:逍遥右脑记忆 http://www.jiyifa.net/gaozhong/976880.html
相关阅读:如何提高高中数学的课堂效率
闂傚倷鑳剁划顖炪€冮崨瀛樺亱濠电姴鍊寸紓姘舵煕椤愩倕鏋旈柣婵嗙埣閺岋絽螖閳ь剟鎮ф繝鍥风稏闁哄稁鍘介悡銉︾箾閹寸偟鎳呮い锝呭级缁绘繈鍩€椤掍礁顕遍柡澶嬪灦椤ユ繈姊洪幖鐐插妧闁告劏鏅滃▓浠嬫⒑鐠囧弶鎹i柟铏尭閿曘垽鏌嗗鍛€柡澶婄墑閸斿酣銆呴弻銉︾厵闁绘垶蓱绾捐崵绱掗鑺ュ暗缂佽鲸鎹囧畷姗€鍩℃担杞版偅闂備浇妗ㄩ梽宥夊磹濠靛宓侀悗锝庡枟閸嬵亝銇勯弽銊ь暡妞ゆ柨娲娲川婵犲嫭鍣梺鎼炲姀閸嬫劕鈽夐悽绋跨劦妞ゆ帒瀚悡鐔告叏濡厧甯舵繛鍛懅缁辨帗娼忛妸褏鐣奸梺褰掝棑婵炩偓濠碉紕鍏橀弫鍌炴偩鐏炵ǹ浜炬い鏇楀亾闁诡喖鍢查埢搴ょ疀閹绢垰浜惧┑鐘宠壘绾惧鏌ㄥ┑鍡橆棤妞も晝鍏橀弻娑樷槈閸楃偛顫╅梺杞拌閺呯娀骞冪捄琛℃闁哄诞鍐剧€辩紓鍌氬€哥粔闈浳涢崘顔肩疇闁规崘顕у婵囥亜閺冨洤袚閻庢俺娅曠换娑氣偓娑欋缚閻霉濠娾偓缁瑩宕洪埀顒併亜閹哄棗浜鹃梺绋匡功閹虫捇鏁冮姀銈呯妞ゆ梹鍎冲畷銉モ攽閻愬弶顥滄繛瀵稿厴閹苯鐣濋崟顒傚幍缂傚倷鐒﹂敋濠殿喖鍟扮槐鎺旀崉閾忛€涚驳缂備礁鐭傛禍鍫曞春閸曨垰绀冪憸蹇曠矆閳ь剟姊虹拠鎻掝劉缂佸甯¢弫瀣⒑缁嬫鍎忕紒澶婂閸掓帒顫濋鐐存そ椤㈡棃宕崘顏勬優闂傚倷绀侀幖顐︽偋閸℃瑧鐭撻悗娑櫳戦崣蹇涙煟閺傚灝鎮戦柡鍜佸墴閹﹢鎮欑捄杞版睏闂佽崵鍠愮换鍫ュ蓟閻旂厧鍑犳い鎰╁灩婵洖鈹戦悩顐壕婵炴挻鍩冮崑鎾搭殽閻愯尙效闁糕斁鍋撳銈嗗笒鐎氼剛鈧艾顦…璺ㄦ崉娓氼垰鍓辩紓鍌氱М閸嬫捇姊绘担鐟邦嚋缂佸鍨剁缓浠嬪籍閸屾粎鐣舵繝銏e煐閸旀洜绮婚妷鈺傜厵缂佸娼¢妤併亜鎼淬垺宕岄柡宀嬬秮閸╋繝宕楅敃鈧紞濠傜暦閿濆牜妲婚梺宕囩帛濡啫顕i幘顔藉€烽柛蹇撴憸閻姊洪懡銈呅i柛鏂炲懎绶ゅ┑鍌溓圭粻鏌ユ煏韫囧鈧洝绻氶梻浣呵归張顒勫礄閻熸噴娲Χ婢跺鍘卞┑鐐叉閸旀洟鎮橀埡鍌ゆ闁绘劕寮堕崰妯尖偓娈垮枤閺佸銆佸Δ鍛<婵犲﹤鍟抽澶愭⒒娴e憡鎯堥柣妤€妫濊棟闁规鍠氶惌鎾绘煕閿旇骞愰柛瀣尭椤繈顢楁担瑙勫濠电姴鐥夐妶鍕儓闂佽鍣崳锝夈€佸Ο琛℃斀閻庯綆鍋呴悾鍫曟⒒娴e憡鎯堟い褉鍋撻梺鐟板殩閹凤拷/闂備礁鎼ˇ顐﹀疾濠婂懏宕查柛鎰典簼閸忔粓鏌ょ粙璺ㄤ粵濞存嚎鍊栫换婵嬫濞戞帞婀呭┑鐐插悑閸旀瑩寮婚敐澶娢╅柕澶堝労娴犲ジ姊洪崫銉ヤ粶妞ゆ洦鍙冮崺鈧い鎺嗗亾婵犫偓閸楃偐鏋嶉柕蹇嬪灪椤洘绻濋棃娑氬閻庢碍姘ㄩ埀顒傛嚀鐎氼厼顭垮Ο鐓庣筏婵炲樊浜濋埛鎴炪亜閹板墎纾跨紒鎰閺屾稓鈧綆鍋嗘晶顒傜磼閸屾稑娴鐐叉瀵爼骞愭惔顔兼櫗 4509422@qq.com 婵犵數鍋為崹鍫曞箰妤e啫纾婚柟鎯х摠閸欏繘鏌曢崼婵愭Ч闁哄拋鍓熼幃姗€鎮欑捄杞版睏濡炪倕绻楁禍顒傛閹惧瓨濯撮柛婵勫劤椤斿姊虹紒妯绘儓缂佽鲸娲熼崺鈧い鎺嗗亾婵犫偓闁秴纾块柟瀵稿У椤洘绻濋棃娑卞剰閻庢艾顦伴妵鍕箳閹存績鍋撻弰蹇嬩汗闁哄被鍎查崐鍫曠叓閸ャ劍灏版い銉у█閺岋絽鈹戦崶鈺傚垱閻庤娲樺銊╁箯閻樿绠甸柟鐑樻煣閹綁姊婚崒姘偓鍝モ偓姘ュ姂瀹曟劙骞嬮敃鈧悞鍨亜閹烘埊鏀婚悗姘炬嫹