解析几何中求参数取值范围的方法

编辑: 路逍遥 关键词: 复习方法 来源: 逍遥右脑记忆

  近几年来,与解析几何有关的参数取值范围的问题经常出现在高考考试中,这类问题不仅涉及知识面广,综合性大,应用性强,而且情景新颖,能很好地考查学生的创新能力和潜在的数学素质,是历年来高考命题的热点和重点。学生在处理这类问题时,往往抓不住问题关键,无法有效地解答,这类问题求解的关键在于根据题意,构造相关的不等式,然后求出不等式的解。那么,如何构造不等式呢?本文介绍几种常见的方法:

  一、利用曲线方程中变量的范围构造不等式

  曲线上的点的坐标往往有一定的变化范围,如椭圆 x2a2 + y2b2 = 1上的点P(x,y)满足-a≤x≤a,-b≤y≤b,因而可利用这些范围来构造不等式求解,另外,也常出现题中有多个变量,变量之间有一定的关系,往往需要将要求的参数去表示已知的变量或建立起适当的不等式,再来求解.这是解决变量取值范围常见的策略和方法.

  例1 已知椭圆 x2a2 + y2b2 = 1 (a>b>0), A,B是椭圆上的两点,线段AB的垂直平分线与x轴相交于点P(x0 , 0)

  求证:-a2-b2a ≤ x0 ≤ a2-b2a

  分析:先求线段AB的垂直平分线方程,求出x0与A,B横坐标的关系,再利用椭圆上的点A,B满足的范围求解.

  解: 设A,B坐标分别为(x1,y1) ,(x2,y2),(x1≠x2)代入椭圆方程,作差得: y2-y1x2-x1 =-b2a2 •x2+x1 y2+y1

  又∵线段AB的垂直平分线方程为

  y- y1+y22 =- x2-x1 y2-y1 (x-x1+x22 )

  令y=0得 x0=x1+x22 •a2-b2a2

  又∵A,B是椭圆x2a2 + y2b2 = 1 上的点

  ∴-a≤x1≤a, -a≤x2≤a, x1≠x2 以及-a≤x1+x22 ≤a

  ∴ 考试技巧 -a2-b2a ≤ x0 ≤ a2-b2a

  例2 如图,已知△OFQ的面积为S,且OF•FQ=1,若 12 < S <2 ,求向量OF与FQ的夹角θ的取值范围.

  分析:须通过题中条件建立夹角θ与变量S的关系,利用S的范围解题.

  解: 依题意有

  ∴tanθ=2S

  ∵12 < S <2 ∴1< tanθ<4

  又∵0≤θ≤π

  ∴π4 <θ 相关信息
本文来自:逍遥右脑记忆 http://www.jiyifa.net/xuexi/82885.html

相关阅读:高考数学二轮复习需要克服“高原现象”