2016中考数学一轮复习必做试题

编辑: 路逍遥 关键词: 中考复习 来源: 逍遥右脑记忆


中考是九年义务教育的终端显示与成果展示,中考是一次选拔性考试,其竞争较为激烈。为了更有效地帮助学生梳理学过的知识,提高复习质量和效率,在中考中取得理想的成绩,下文为大家准备了中考数学一轮复习必做试题

A级 基础题

1.下列各组线段(单位:cm)中,是成比例线段的为()

A.1,2,3,4 B.1,2,2,4 C.3,5,9,13 D.1,2,2,3

2.(2013年北京)如图614,为估算某河的宽度,在河对岸边选定一个目标点A,在近岸取点B,C,D,使得ABBC,CDBC,点E在BC上,并且点A,E,D在同一条直线上.若测得BE=20 m,EC=10 m,CD=20 m,则河的宽度AB=()

A. 60 m B. 40 m C. 30 m D. 20 m

图614 图615

3.(2013年上海)如图615,已知在△ABC中,点D,E,F分别是边AB,AC,BC上的点,DE∥BC,EF∥AB,且AD∶DB=3∶5,那么CF∶CB=()

A. 5∶8 B.3∶8 C.3∶5 D.2∶5

4.若两个相似三角形的面积之比为1∶16,则它们的周长之比为()

A.1∶2 B.1∶4 C.1∶5 D.1∶16

5.(2013年江苏无锡)如图616,在梯形ABCD中,AD∥BC,对角线AC,BD相交于O,AD=1,BC=4,则△AOD与△BOC的面积之比等于()

A.12 B.14 C.18 D.116

图616图617

6.(2013年山东威海)如图617,在△ABC中,A=36,AB=AC,AB的垂直平分线OD交AB于点O,交AC于点D,连接BD.下列结论错误的是()

A.C=2A B.BD平分ABC

C.S△BCD=S△BOD D.点D为线段AC的黄金分割点

7.下列说法中:①所有的等腰三角形都相似;②所有的正三角形都相似;③所有的正方形都相似;④所有的矩形都相似.其中说法正确的序号是________________.

8.(2013年四川雅安)如图618, 在ABCD,E在AB上,CE,DB交于F,若AE∶BE=4∶3,且BF=2,则DF=________.

图618图619

9.(2013年江苏泰州)如图619,在平面直角坐标系xOy中,点A,B的坐标分别为(3,0),(2,-3),△ABO是△ABO关于点A的位似图形,且O的坐标为(-1,0),则点B的坐标为________.

10.(2016年湖南株洲)如图620,在矩形ABCD中,AB=6,BC=8,沿直线MN对折,使A,C重合,直线MN交AC于点O.

(1)求证:△COM∽△CBA;

(2)求线段OM的长度.

B级 中等题

11.(2013年山东淄博)在△ABC中,P是AB上的动点(P异于A,B),过点P的一条直线截△ABC,使截得的三角形与△ABC相似,我们不妨称这种直线为过点P的△ABC的相似线.如图621,A=36,AB=AC,当点P在AC的垂直平分线上时,过点P的△ABC的相似线最多有__________条.

图621

12.如图622,大江的同一侧有A,B两个工厂,它们都有垂直于江边的小路,AD,BE的长度分别为3千米和2千米,且两条小路之间的距离为5千米.现要在江边建一个供水站向A,B两厂送水,欲使供水管路最短,则供水站应建在距E处多远的位置?

13.(2016年湖南株洲)如图623,在△ABC中,C=90,BC=5米,AC=12米.点M在线段CA上,从C向A运动,速度为1米/秒;同时点N在线段AB上,从A向B运动,速度为2米/秒,运动时间为t秒.

(1)当t为何值时,AMN=

(2)当t为何值时,△AMN的面积最大?并求出这个最大值.

图623

C级 拔尖题

14.(2016年山东滨州)某高中学校为高一新生设计的学生板凳的正面视图如图624.其中BA=CD,BC=20 cm,BC,EF平行于地面AD且到地面AD的距离分别为40 cm,8 cm,为使板凳两腿底端A,D之间的距离为50 cm,那么横梁EF应为多长(材质及其厚度等暂忽略不计)?

图形的相似

1.B 2.B 3.A 4.B 5.D 6.C 7.②③

8.143 解析:AB∥CD△BEF∽△DCFBECD=BFDF,又∵AEBE=43,BEAB=37,即BECD=37,则有37=2DF,DF=143.

9.53,-4

10.(1)证明:∵A与C关于直线MN对称,

ACMN.COM=90.

在矩形ABCD中,B=90,COM=B.

又∵ACB=MCO,

△COM∽△CBA.

(2)解:∵在Rt△CBA中,AB=6,BC=8,

AC=10,OC=5.

∵△COM∽△CBA,

OCCB=OMAB,OM=154.

11.3

12.解:如图55,作出点B关于江边的对称点C,连接AC,则BF+FA=CF+FA=CA.

根据两点之间线段最短,可知当供水站在点F处时,供水管路最短.

∵△ADF∽△CEF,

设EF=x,则FD=5-x,

根据相似三角形的性质,得

EFFD=CEAD,即x5-x=23,解得x=2.

故供水站应建在距E点2千米处.

图55

13.解:(1)由题意,得AM=12-t,AN=2t.

∵AMN=ANM,

AM=AN,从而12-t=2t,

解得t=4秒.

当t为4秒时,AMN=ANM.

(2)如图56,过点N作NHAC于点H,

NHA=C=90.

∵A是公共角,△NHA∽△BCA.

ANAB=NHBC,即2t13=NH5,NH=10t13.

从而有S△AMN=12(12-t)10t13=-513t2+6013t,

当t=6时,S有最大值为18013.

图56 图57

14.解:如图57,过点C作CM∥AB,交EF,AD于N,M,作CPAD,交EF,AD于Q,P.

由题意,得四边形ABCM是平行四边形,

EN=AM=BC=20 cm.

MD=AD-AM=50-20=30(cm).

由题意知CP=40 cm,PQ=8 cm,CQ=32 cm.

∵EF∥AD,△CNF∽△CMD.

NFMD=CQCP,即NF30=3240.

解得NF=24 cm.

EF=EN+NF=20+24=44(cm).

答:横梁EF应为44 cm.

这篇中考数学一轮复习必做试题的内容,希望会对各位同学带来很大的帮助。


本文来自:逍遥右脑记忆 http://www.jiyifa.net/zhongkao/432251.html

相关阅读:精做题 多睡眠 砸基础中考的三大体会