进入初三以来,很多考生每天面对不断的习题,感觉有永远做不完的题目,陷入一种题海中,但成绩总是不见进步。
因此,我们今天就来讲讲中考数学容易拉分板块,希望能帮助到大家。
最容易拉分板块:函数综合问题
在近几年的全国各地中考中,尽管试卷不一样,但函数综合问题都占了一定的比重,特别是在最后的几个大题总会考到。
为何函数综合问题会如此重要呢?因为函数的思想方法可以反映出一个数学问题的内在联系,把抽象的数学问题进行具体化,建立函数关系,并利用函数的图像和性质来研究、解决问题。
初中数学学习函数一般就这么三大类:
一次函数(包括正比例函数),它们所对应的图像是直线;
反比例函数,它所对应的图像是双曲线;
二次函数,它所对应的图像是抛物线。
函数的思想方法主要包括以下几方面:
运用函数的有关性质解决函数的某些问题;
以运动变化的观点,分析和研究具体问题中的数量关系,建立函数关系,运用函数的知识,使问题得到解决;
经过适当的数学变化和构造,使一个非函数的问题转化为函数的形式,并运用函数的性质来处理这一问题。
二次函数综合题.
题干分析:
(1)把点D坐标代入抛物线y=π/3(x+1)(x?3),即可得出m的值,再令y=0,即可得出点A,B坐标;
(2)根据尺规作图的要求,画出图形,如图1所示;
(3)过点D作射线AE的垂线,垂足为N,交AB于点M,此时DN的长度即为ME+MN的最小值;
(4)假设存在点P,使以P、G、A为顶点的三角形与△ABD相似,设点P坐标,再表示出点G坐标,计算△ABD的三边,根据勾股定理的逆定理,判断三角形的形状,即可得出结论,若△ABD是直角三角形,即可得出相似,再得出对应边成比例,求得点P坐标即可.
解题反思:
本题考查了二次函数的综合题,还考查了用待定系数法求二次函数解析式、勾股定理和逆定理以及轴对称?最小路径问题等重要知识点,难度较大.
中考考查函数综合题一般是先给定直角坐标系和几何图形,之后再求函数的解析式(或在题干中已告诉我们函数解析式),然后结合函数与几何的图像和性质进行研究,如求点的坐标或研究图形的某些性质。
求已知函数的解析式主要方法是待定系数法,关键是求点的坐标,而求点的坐标基本方法是几何法(图形法)和代数法(解析法)。
(声明:本文来源于吴国平的作者撰写,解释权归文章作者所有。)
本文来自:逍遥右脑记忆 http://www.jiyifa.net/zhongkao/816109.html
相关阅读:北京中考化学复习